Wearable Plasmonic Biofluid Sensor For Personalized Medicine: NaturePortfolio nanosensors biosensor sweat nanofluidics nanofluid bionanotechnology nanotechnology
Study: Flexible microfluidic nanoplasmonic sensors for refreshable and portable recognition of sweat biochemical fingerprint. Image Credit: Billion Photos/Shutterstock.com
By integrating molecular identification methods, micro-nano electronics, interconnected hardware/software platforms, and different analytical approaches, significant development can produce these wearable sweat detectors. The wearable sweat detectors can now provide visual sensing access through color/absorbance and fluorescent depth measurements.
SERS Integrated Flexible Plasmonic Devices SERS is a widely used analytical method that provides strong Raman signal augmentation by targeted plasmon-enhanced stimulation and dispersion. Flexible plasmonic electronics created by combining SERS with wearable technologies have received a lot of interest for smart biomedical applications.
In this study, the researchers created a flexible microfluidic nanoplasmonic detector in for the reusable and transportable detection of sweat molecular fingerprints. Adopting a portable Raman scanner also allows Raman signals to be read anywhere, eliminating the need for expensive equipment and conventional laboratory conditions. The plasmonic microfluidic device can thus provide a medical research environment for customized healthcare by allowing for the quick, simple, and portable screening of physiologically linked indicators in sweat.
Canada Latest News, Canada Headlines
Similar News:You can also read news stories similar to this one that we have collected from other news sources.
Murray Pittock on Tartan: the rebel cloth that made sedition wearableTARTAN was a rebel cloth. It is well known that in the Act of Proscription following Culloden it was stated: “That from and after the first day of…
Read more »
Recommendations for clinical interpretation of variants found in non-coding regions of the genome - Genome MedicineBackground The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts. Methods We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an initial draft of the guidelines which were then extensively tested and reviewed by external groups. Results We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants. Conclusions These recommendations aim to increase the number and range of non-coding region variants that can be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the discovery of novel disease mechanisms.
Read more »
Adipose methylome integrative-omic analyses reveal genetic and dietary metabolic health drivers and insulin resistance classifiers - Genome MedicineBackground There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. Methods Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. Results We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression,
Read more »